Accurate urban road centerline extraction from VHR imagery via multiscale segmentation and tensor voting
نویسندگان
چکیده
It is very useful and increasingly popular to extract accurate road centerlines from very-high-resolution (VHR) remote sensing imagery for various applications, such as road map generation and updating etc. There are three shortcomings of current methods: (a) Due to the noise and occlusions (owing to vehicles and trees), most road extraction methods bring in heterogeneous classification results; (b) Morphological thinning algorithm is widely used to extract road centerlines, while it produces small spurs around the centerlines; (c) Many methods are ineffective to extract centerlines around the road intersections. To address the above three issues, we propose a novel method to extract smooth and complete road centerlines via three techniques: the multiscale joint collaborative representation (MJCR) & graph cuts (GC), tensor voting (TV) & non-maximum suppression (NMS) and fitting based connection algorithm. Specifically, a MJCR-GC based road area segmentation method is proposed by incorporating mutiscale features and spatial information. In this way, a homogenous road segmentation result is achieved. Then, to obtain a smooth and correct road centerline network, a TV-NMS based centerline extraction method is introduced. This method not only extracts smooth road centerlines, but also connects the discontinuous road centerlines. Finally, to overcome the ineffectiveness of current methods in the road intersection, a fitting based road centerline connection algorithm is proposed. As a result, we can get a complete road centerline network. Extensive experiments on two datasets demonstrate that our method achieves higher quantitative results, as well as more satisfactory visual performances by comparing with state-of-the-art methods. As another contribution, a new and challenging road centerline extraction dataset for VHR remote sensing images is made and publicly available for further studies.
منابع مشابه
Multiscale Geoscene Segmentation for Extracting Urban Functional Zones from VHR Satellite Images
Urban functional zones, such as commercial, residential, and industrial zones, are basic units of urban planning, and play an important role in monitoring urbanization. However, historical functional-zone maps are rarely available for cities in developing countries, as traditional urban investigations focus on geographic objects rather than functional zones. Recent studies have sought to extrac...
متن کاملDevelopment of an Automatic Land Use Extraction System in Urban Areas using VHR Aerial Imagery and GIS Vector Data
Lack of detailed land use (LU) information and efficient data collection methods have made the modeling of urban systems difficult. This study aims to develop a novel hierarchical rule-based LU extraction framework using geographic vector and remotely sensed (RS) data, in order to extract detailed subzonal LU information, residential LU in this study. The LU extraction system is developed to ex...
متن کاملAutomatic Road Centerline Extraction from Imagery Using Road GPS Data
Road centerline extraction from imagery constitutes a key element in numerous geospatial applications, which has been addressed through a variety of approaches. However, most of the existing methods are not capable of dealing with challenges such as different road shapes, complex scenes, and variable resolutions. This paper presents a novel method for road centerline extraction from imagery in ...
متن کاملA multiscale feature fusion approach for classification of very high resolution satellite imagery based on wavelet transform
A novel methodology based on multiscale spectral and spatial information fusion using wavelet transform is proposed in order to classify very high resolution (VHR) satellite imagery. Conventional wavelet-based feature extraction methods employ single windows of a fixed size, which are not satisfactory as the VHR imagery contains complex and multiscale objects. In this paper, spectral and spatia...
متن کاملAutomated Road Network Extraction from High Resolution Multi-spectral Imagery
In this paper, a new approach to road network extraction from multi-spectral (MS) imagery is presented. The proposed approach begins with an image segmentation using a spectral clustering algorithm. This step focuses on the exploitation of the spectral information for feature extraction. The road cluster(s) is automatically identified using a fuzzy classifier based on a set of predefined member...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 205 شماره
صفحات -
تاریخ انتشار 2016